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We study the relationship between dynamical structure and shape for vortex pairs, 
now usually named ‘ modons ’. When the boundary between the exterior irrotational 
flow and the inner core of non-zero vorticity is a circle, an analytical solution is 
known. Here, we generalize the circular modons to solitary vortex pairs whose 
vorticity boundary is an ellipse. We find that as the eccentricity of the ellipse 
increases, the vorticity becomes concentrated in narrow ridges which run just inside 
the elliptical vorticity boundary and continue just inside the line of zero vorticity 
which divides the two vortices. Each vortex becomes increasingly ‘hollow ’ in the 
sense that each contains a broad valley of low vorticity which is completely enclosed 
by the ridge of high vorticity already described. The relationship between vorticity 
g and streak function Y, which is linear for the circular modons, becomes strongly 
nonlinear for highly eccentric modons, qualitatively resembling 5 cc for some 
constant A. In  this study, we neglect the Earth’s rotation, but our method is directly 
applicable to quasi-geostrophic modons, too. An efficient and simple spectral method 
for modon problems is provided. 

1. Introduction 
‘Modon’ is a generally used name for a solitary pair of contra-rotating vortices. 

Hydrodynamics (Lamb 1932) is probably the earliest description of modons although 
the term ‘ modon ’ was invented by Stern (1975). In  the past three decades, modons 
have aroused great research interest especially in geophysics and plasma physics (see 
table 1) .  The main reason for this enthusiasm for modon study is that vortices and 
vortex pairs are fundamental parts of the geofluid environment, i.e. the atmosphere 
and ocean. A thorough modon theory will greatly help to understand, explain, and 
predict many important atmospheric and oceanic phenomena such as atmospheric 
blocking and Gulf Stream rings. 

The existing modon solutions can be divided into two categories : exact analytical 
solutions and numerical approximations. There are some common assumptions 
among the analytical models inherited from Lamb’s original model. These common 
assumptions are that the boundary between the rotational and irrotational (without 
/3 effect) flow is a circle ; the vorticity is a linear function of the stream function ; the 
tangential velocity is continuous everywhere. The mathematical problem is greatly 
simplified by these assumptions so that exact analytical modon solutions are 
possible. In  spherical geometry, these solutions are associated Legendre functions ; in 
Cartesian geometry, these circular modons are Bessel functions. 

In the numerical category, time integration has been used to study the process of 
modon formation from the collision of monopoles (MeWilliams 1983) ; to test the 
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Modon 
Modon models shapes 

Lamb 1932 circle 
Batchelor 1967 circle 
Stern 1975 circle 
Larichev & circle 

Flier1 et al. circle 

McWilliams 1980, circle 

Reznik 1976 

1980, 1983 

1983 ; McWilliams 
et al. 1981 

Shen 1981 arbitrary 

Tribbia 1984 circle 

Verkley 1984, circle/ 
1987 calculated 

Deem & Zabusky calculated* 

Pierrehumbert calculated 

Tanveer 1986 calculated 
Eydeland & calculated 

Present work ellipse 

1978 

1980 

Turkington 1988 

5 = F('Y) 
linear 
linear 
linear 
linear 

linear 

linear 

unspecified 

linear 

linear/ 
calculated 

5 = const 

5 = const 

5 = const 
5 =  "-1 

calculated 

Mathematical 
approaches 

analytical 
analytical 
analytical 
analytical 

analytical/fini te 

analytical/ finite 
difference 

difference 

integral constraint 
theorems 

analytical 

analytical/inverse 
power/spherical 
harmonics 

contour dynamics/ 
relaxation 

contour dynamics 

conformal mapping 
variational method 

Chebyshev 
pseudospectral/ 
Newton's iteration 

~~ ~~ 

Spherical 
effects 

no 
no 
p plane approx. 
p plane approx. 

/3 plane approx. 

/3 plane approx. 

p plane approx. 

spherical 

spherical 
coordinates 

coordinates 

no 

no 

no 
no 

no 

* This quantity is determined by solutions of the model rather than by being specified a priori. 

TABLE 1. Some characteristics of modon models 

stability of modons (McWilliams et al. 1981); and to investigate other modon 
interaction processes (McWilliams & Zabusky 1982 ; Larichev & Reznik 1983). Other 
numerical studies including this work have computed modons directly by solving a 
nonlinear boundary-value problem to relax the restriction of a circular vorticity 
boundary. 

There are some concerns about the analytical solutions because modons observed 
in nature are often not circular, in the sense that the boundary between the 
rotational and irrotational flow is not an exact circle, and the linear relationship 
between vorticity and stream function which is assumed by the analytical theories 
is not generally true for non-circular modons. It is necessary to have modon models 
to deal with these aspects. The numerical models have showed various modon shapes 
and nonlinear relationships between vorticity and stream function (Deem & Zabusky 
1978; Tanveer 1986; Verkley 1987; Eydeland & Turkington 1988; and the present 
work). 

The shape of the modon and the relationship between the vorticity and the stream 
function, i.e. 5 = F( Y), are two factors which can be used to determine the modon 
solutions, and only one of them is independent. All except us have specified the 
function F(  !P) which is the vorticity ; the vorticity boundary is then calculated as 
part of the numerical solution. In  contrast, we specify the vorticity boundary to be 
an ellipse and compute F(  !P). 
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The computational advantage of our approach is that it allows us to split the 
domain into two so that the solution is smooth and analytic everywhere within each 
subdomain. The vorticity has a discontinuous slope a t  the vorticity boundary which 
would destroy the exponential accuracy of the spectral method if we attempted to 
use a single Chebyshev-Fourier series over the whole flow. 

The present paper uses a spectral method to compute elliptical modons. The 
features of this model are: (i) The shape of the modon can be changed continuously 
from a circle to a very narrow ellipse through adjusting one parameter which enables 
us to compare the behaviour of modons at different shapes rather easily; (ii) The 
modon is computed in a frame of reference moving with the vortex pair (the modon 
is stationary in this moving coordinate system) ; (iii) The exterior flow is irrotational ; 
(iv) The modon is computed by solving a third-order nonlinear partial differential 
equation. Two boundary conditions are that the streak function and its first 
derivative are continuous a t  the boundary. The third boundary condition is that of 
boundedness a t  the origin ; (v) The relation between the vorticity and the stream 
function of the interior flow is single valued but nonlinear. 

The numerical techniques employed are Chebyshev polynomials and Fourier 
series in elliptical coordinates, and the Newton-Kantorovich iteration. These 
methods are so efficient for the present modon problem that even a micro-computer 
can handle the computation. 

2. Mathematical formulation 
2.1. Governing equation 

For steady, frictionless, barotropic flow, if we assume the coordinate system is 
moving in the x-direction with speed c,  then the vorticity equation can be written as 

V($h+cy) x VC = 0, (2.1) 
where $h is stream function, C is vorticity. If we use the notation of the 'streak 
function' Y, which was introduced by Flier1 et al. (1980), then (2.1) can be written 

(2.2) 

(2.3) 

Let x = d cosh (5) cos ( q ) ,  (2.4) 
y = d sinh (5) sin (q), (2.5) 

2.2. Transformation and analysis under elliptical coordinates 

where d is half of the distance between the foci (figure 1). 
Under elliptical coordinates (&q) the governing equation (2.2) becomes 

where the vorticity 6 is 
6 = V 2 Y  = I/[d2(Cosh2 (5) - C O S ~  (q ) ) ]  (Ytc+ Y,,). (2.7) 

Substituting (2.7) into (2.6) and multiplying through by a factor, we obtain 

ul, yg, + Y[ y,,, - @  COB (q) sin (7)/[cosh2 (5) - cos2 (7)lI (q ul,, 
+ Y[ Ym)- Y, YE[[- Y,, Yt,,+{2 cosh (5) sinh (5)/[cosh2 (5) 

- C O S ~  (q)]} ( Y, Y"+ Y, Y,,) = 0. (2.8) 
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r / = o  
7 = 2K 

7 = :r 

FIGURE 1. Elliptical coordinates. The ellipses are contours of constant E ;  the hyperbolas are 
contours of constant 7 where q is the angular coordinate. 

If we assume that the boundary between the interior and exterior flow is the ellipse, 
f = to, and that the streak function Y and its first derivative are continuous at the 
boundary, and, without losing generality, that Y = 0 at f = c,, then the irrotational 
exterior flow has the solution 

Y =  cdsin(r)[sinh(f)-sinh(f,)exp(f,-()], (2.9) 

when the exterior flow at  infinity is parallel to the major axis of the ellipse E = 6,. 
This exterior solution (2.9) is the same as the solution for the problem of the stream 
past a solid elliptical body (Lamb 1932). 

Observe that every term in (2.8) is quadratically nonlinear. This implies that if 
Y ( f , r )  is a solution of (2.8), then hY(f, 7) is also a solution for any constant A. The 
exterior solution is directly proportional to c. It follows that if we have a solution 
that satisfies the differential equation and boundary condition for c = c,, then hY(f, 
7) is a solution for c = hc, if the boundary ellipse is unchanged. Thus, the phase speed 
c merely provides the amplitude for the solution. The shape of the modon is 
independent of c. 

Similarly, (2.8) is also independent of d ,  the constant that appears in the definition 
of the elliptical coordinates (2.4) and (2.5). Noting that the exterior solution is 
proportional to d ,  we find that the shape of the modon is also independent of d except 
that d stretches the width of the solution in both x and y. Thus, the only non-trivial 
parameter is go, the quasi-radial coordinate of the ellipse bounding the interior 
rotational region. 

It follows that it is only necessary to solve the elliptical modon problem for c = 
1 and d = 1 ; all other modons with that value of to can be obtained from the (c = 
d = 1)  solution by resealing the amplitude and the spatial coordinates. 

3. Numerical methods for the interior solution 
Since (2.8) is nonlinear, we solve it via Newton-Kantorovioh iteration. 

Let !Pcl = ! P + A ’ ,  (3.1) 

where ‘Y is the value of interior streak function a t  the ith iteration, and Ai  is the 
correction to  !P, 
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Substituting (3.1) into (2.8) and neglecting all nonlinear terms of A i ,  the linearized 
equation for A' is 

A t  q6,, + q A&, + A:,,,, + A! u",,,, -A(A; !Pitt + Ait+ At  q,, 
+ q A:,,) - A :  PiEs- u", AkEE- A: q,,,, - q At,,,, + B ( A i  7 !P 55 

+ + A: q,, + A:,,) = - - q q,,,, + A (  q q6 
+q~,,)+1F/z;q66+qq,,,,-B(1F/z;,IY"S++~~), (3.2) 

where 2 cos (7) sin (7) 2 cosh ( E )  sinh (6)  
A =  B =  

cosh2 (6)  - C O S ~  (7) ' cosh2 (t) - C O S ~  (7) 

From (2.9), we know the exterior streak function is zero a t  6 = to, but not its first 
derivative. Since we require the first derivative as well as the streak function to be 
continuous a t  the boundary [ = to, we should impose the same boundary values for 
the interior solution. It is convenient to write 

Y=P+',  (3.3) 

where P is a known function of 6 and r,i that satisfies the inhomogeneous boundary 
condition of matching the first derivative of the exterior solution (2.9): 

Now the problem of calculating Y becomes that of calculating V(E,y)  which 
satisfies two homogeneous boundary conditions : 

plus the implicit condition of boundedness as 6 + 0. 

If we let 

then compare (3.1) with (3.4) we know 

!PI = P(!57) ,  

1-1 

WE, 7) = P(Et 7) + z An( [ ,  7), 

w, 7) = x di(L 7). 

n-0 

N 

1-0 

Obviously, A'(& 7) should satisfy the homogeneous boundary conditions 

A'((E;,r) = 0 a t  6 = to, 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Equation (3.2) plus the boundary conditions (3.10) and (3.11) constitute a linear 
system, which is going to be solved by the spectral method. The streak function has 
the following properties : 

(i) streak-function Y and its first derivative aY/at are continuous and !P itself 
equals zero a t  boundary 6 = to. 
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(ii) Y is periodic in 7. 
(iii) Y is antisymmetric about 7 = 0 and symmetric about 7 = in. 

The symmetry properties follow from those of the analytical, circular modon and the 
fact that changing the shape at the vorticity boundary to an ellipse does not disrupt 
those symmetries. The periodicity in 7 implies that a Fourier basis is best for this 
coordinate. We use Chebyshev polynomials for the non-periodic coordinate 6. We can 
greatly improve the efficiency of the spectral method by restricting the basis to 
functions that have the same symmetries as Y. This implies 

di = C 22 amn sin [(zm- 1) 71 $2n+3(6). 

nl n2 

n-1 m=l 
(3.12) 

The basis function $2n+3 is defined as 

$2n+3(6) = $2?2+3(flO cos ('1) = TZn+3(') + azn+3 T,(t) + P2n+3 '3(t), (3.13) 

where Tn(t) is the Chebyshev basis function of nth order defined as Tn(cos ( t ) )  = cos 
(nt). 

a,/? are chosen as 
C Z ~ ~ + ~  = Q[(2n + 3)'- 11 - 1 (3.14) 

P2n+3 = Q[1-(2n+3)'1 (3.15) 

so that boundary conditions (3.10) and (3.11) are satisfied. This special technique is 
called 'basis recombinat'ion ' (Boyd 1989). With such recombined basis functions, 
every basis function individually satisfies the homogeneous boundary conditions. 

Substituting (3.12) into (3.2), we obtain: 

-1 122 

C C amn{$in+3 sin [(2m- 1) 71 q t v  

+ (2m- '1 $ in+3(8  'OS [(2m- '1 71 

+$k+3(63sin[(2m-') 71 q , , -A[$ ; ln+3(6 )~ in[ (2m- l )  71 qc 
+$in+3(k)sin(2m-1) q+$k+3(6)sin[(2m-1) 71 Tp, 

'I3 $2m+3(fl) cos [(2m- '1 71 qst 

-(2m- ')'$Zn+3(6) sin 

- (2m- '1 $2n+3(fl) 'OS [ (2m- ' )  71 ?&-$&+3(f l )  sin [(2m-1) 71 q 
- (2m- ') $2n+3(6 )  'OS [(2m- '1 71 qv,+ (2m- ll2 $in+3(6) sin [(2m- l )  71 

+B[(2m-1) $2n+3(6) 'OS [ (2m-1)  71 @;t 

+$&.+3(6) sin [(2m- '1 71 u", + (2m- l )  $ 2 n + 3 ( 8  cos [(2m- ') 71 q?) 

') 71 q1 

- (2m-l )2$Zn+3(~)s in[ (2m-l )~]  q]> = -qPit,,-q!Pk,+A(qPic 
+ q !q,) + u", qtt + !Pi qv7 -B( u", yt + Pi Pi,) (3.16) 

where $tnf3(6) ,  $rn+3(g) are the first-, second-, and third-order derivatives of 
$,n+3(kJ. The calculation of !P and its derivatives is carried out following (3.8). 

Equation (3.16) contains n1xn2 unknown coefficients amn. In  order to obtain 
n, x n, equations we apply the pseudospectral method, i.e. apply (3.16) a t  n, x n, 
interpolation points in (t, 7)-space. There are n, evenly spaced interpolation points 
in the spectral space t ranging from 0 to in, which corresponds to an unevenly spaced 
interpolation in the physical space 6 ranging from to to 0. There are n, evenly spaced 
interpolation points in physical space 7 ranging from 0 to in. We only calculate the 
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FIGURE 2. The rescaled absolute error of streak function between Lamb's analytical circular 
modon solution and the spectral numerical solution for elliptical modon with 6, = 10.0 in which 
case the difference between the major axis and minor axis of the modon boundary ellipse is less than 

The error has been rescaled by dividing it by the maximum of the stream function. The streak 
function values are taken along 7 = in. 

Truncation Iteration 
60 n1 n2 error times cpu time* 

10 50 1 10-6 16 26 s 
3 30 2 10-5 6 22 8 
1 25 8 10-6 4 3 min 10 s 
0.5 41 14 10-6 5 23 min 56 s 

* Computing times are for a single processer on an Alliant FX80, superminicomputer. 

TABLE 2. Numerical factors for experiments 

solution for 7 values between 0 and and 27c 
can be deduced by the symmetry properties of Y. In  this way we have saved a lot 
of Computation time and storage space. Now the remaining problem is only a matter 
of linear algebra. Since in most cases n, x n2 is much smaller than 1000, Gaussian 
elimination is very efficient even with a microcomputer. This is one of the major 
virtues of the spectral method over finite difference. For the same problem and same 
precision, finite differences algorithms usually require a matrix much larger than 
that of the spectral method. 

because the solution for 7 between 

4. Numerical results 
We have run a series of numerical experiments with different values of eo. The 

larger go is, the closer the shape of the modon is to a circle. Eo = 10 is so close to a 
circle that the difference between the major axis and minor axis is less than The 
difference between the numerical solution of E0 = I0 and the Lamb-Batchelor 
analytical solution is given in figure 2, which shows that for a large value of f;, the 
numerical solution is almost identical to Lamb-Batchelor's analytical solution. 
Table 2 gives several basic numerical factors for these experiments. Figures 3(a)- 
3( f )  are the contour plots of streak function and vorticity for different values of to. 

20 FLM 221 
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FIGURE 3 (u, a). For caption see page 606. 
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(4 

FIGURE 3 ( c , d ) .  For caption see next page. 

For the circular modon, the vorticity variation within the vortex is very homogeneous 
and the vorticity maximum is at the centre of each vortex (figure 3 d ) .  However, this is 
not true for elliptical modons. When the ellipticity is large, there is a strong vorticity 
shear region a t  the boundary between the rotational flow and irrotational flow (figure 
4), and unlike the circular modon case the maximum vorticity does not locate a t  the 
centre of the vortex but near its boundary. Both the maximum vorticity and the 
vorticity shear a t  the boundary grow stronger as the value of to becomes smaller, i.e. 

20-2 
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(el 

FIGURE 3. Contour plots of the streak function and vorticity. (a )  The contour plot of streak 
function for 5, = 10.0. ( b )  The contour plot of streak function for t,, = 1.0. (c )  The contour plot of 
streak function for 6, = 0.5. ( d )  The contour plot of vorticity for 6, = 10.0. ( e )  The contour plot of 
vorticity for 6, = I .O. (f) The contour plot of vorticity for 5, = 0.5. 

the boundary ellipse becomes more eccentric (figure 3 e , f ) .  For to = 1.0 and 0.5, the 
ratio between the major axis and the minor axis of the boundary ellipse is 1.31 and 
2.16 respectively. Figure 5 describes the relation between streak function and 
vorticity for circular modons and elliptical modons. For circular modons (figure 5a)  
the relationship between streak function and vorticity is linear, and the vortex is 
much weaker than in the elliptical modons, even though the exterior flow speed at 
infinity (which is also the modon phase speed) is the same in all figures. The 
relationship between the streak function and vorticity is nonlinear for elliptical 
modons. When the eccentricity of the boundary ellipse increases, the peak in the 
scatter plots of vorticity versus streak function becomes sharper and the maximum 
vorticity becomes larger (figure 5 b ,  c ) .  

The gradient of vorticity near the elliptical boundary becomes sharper as to 
becomes smaller, which means higher resolution is needed. Theoretically, it is 
possible for us to calculate the modon solution with any given value of to, no matter 
how small it is, using the same numerical method. But for a given computer there is 
a minimum value of to for practical calculations, mainly because of the limitation of 
the computer storage. Since the general tendency of the change of the solution is 
consistent as we decrease the value of to, we can speculate that the modon with 
extremely small 6, should be like a ‘hollow vortex’ which has a strong vortex sheet 
forming its elongated boundary but almost no vorticity inside it. 
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FIGURE 4. Contour plot of vorticity for &, = 0.35. 
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An interesting discovery in figures 5(b )  and 5 ( c )  is that the curve of vorticity 
versus streak function bends toward the horizontal axis as the absolute value of the 
streak function increases. This means that the maximum value of vorticity happens 
at some moderate value of streak function but not at its extremes. This result is 
totally different from those of other studies in which the vorticity maximum always 
corresponds to the maximum value of streak function (McWilliams 1983 ; Kloosterziel 
& Van Heijst 1989). 

Although we did not impose the condition that vorticity has to be continuous a t  
the boundary, it turns out that for the present numerical modon solution this 
condition is satisfied automatically, i.e. the vorticity 5 = F( !P) vanishes a t  the 
boundary (figure 5c). The justification of this result is that P( Y(0,q))  = F( Y(6,O)) = 
F(Y(6 ,n ) )  = 0 because Y and [ are antisymmetric about 6 = 0, q = 0 and q = R. 

Because B’( Y(6, q)) is a single-valued function of Y and the boundary ellipse 6 = E0 
intersects both q = 0 and q = R, hence F( Y(&, 7)) = 0. 
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(b) 

-6  -4 -2 0 2 4 6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 
Y Y 

- 1 5 ~ ~ ~ I l ~ I o J  
-0.2 -0.1 0 0. I 0.2 

Y 

FIGURE 5.  Scatter plots of vorticity versus streak function. (a )  to = 10.0. ( b )  6, = 1.0. (c )  5, =0.5. 

-0.2 -0.1 0 0.1 0.2 
Y 

FUXJRE 6. Same as figure 5 ( c )  but for a smaller basis set. The number of interpolation points in the 
quasi-radial direction is 25 and that in the angular direction is 8. Because the numerical resolution 
is too low, the scatter plot shows a great deal of divergence. 
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FIGURE 7. Contour plot of vorticity for to = 0.5 using 80 x 80 data points. The ripples along the 
modon boundary are graphing errors, not found in the numerical solution itself. 

In  order to check the reliability of our results we have repeated each calculation 
with different numbers of spectral components. We find that when the number of 
spectral components is small the scatter plot shows a great deal of divergence (figure 
6). When we have used enough spectral components, the scatter plot gives a smooth, 
single-valued curve (figure 5c) ,  which helps to demonstrate the correctness of our 
numerical results. Also as an independent check, we have substituted spectral 
solutions into the finite difference discretization of (2.2) with a very small grid 
spacing and confirmed that the residual is very small. 

We have obtained some rather confusing pictures when plotting vorticity contours 
by using standard contouring software (figure 7) .  The ripples along the modon 
boundary in figure 7 are artifacts created by the contouring software rather than 
oscillations in the numerical solution itself. This unrealistic phenomenon can be 
eliminated by using a ridiculously large number of data points (400 x 400 data points 
in a 5 in. x 5 in. area). We have tried contouring software from several totally 
different computer resources and surprisingly found that they all inherited the same 
technical weakness. The problem is that contouring routines approximate the 
vorticity by piecewise linear interpolation within each square of the contouring grid. 
Because the vorticity has a discontinuous slope a t  the vorticity boundary, linear 
interpolation is a bad approximation whenever the boundary ellipse passes through 
a contouring square. Buning (1988) catalogues a number of similar (but different) 
graphical problems. 

5. Conclusions and discussion 
The present study shows that the two-dimensional modon problem can be solved 

by the spectral method very efficiently. If the boundary of the modon is elliptical and 
we require that at  least the velocity be continuous, then the relationship between 
modon streak function and vorticity is nonlinear. The shape of the modon plays an 
important role in the modon dynamic structure. The maximum vorticity does not 
appear a t  the centre of the vortex but near the elliptical modon boundary. Both the 
maximum vorticity and the intensity of the vorticity gradient near the boundary 
grow and the vorticity shear is confined in a thinner layer as the eccentricity of the 
boundary ellipse increases. 

Coriolis force and viscosity effects are not considered in the present problem. It 
would be very interesting to include them in a future study and see what kind of 
difference they will bring up. There have already been studies about the effect of 
viscosity in the circular modon case (MeWilliams et al. 1981), which shows that weak 
viscosity does not seem to have any significant influence on the basic structure of the 
solution except that the modon-amplitude slowly decreases with time and smears out 
the discontinuity of the vorticity slope. We can expect the same thing to happen in 
the elliptic modon case, too. 
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The only modification that the Coriolis term will bring about is that the governing 
equation now is a Helmholtz equation instead of a Laplace’s equation, and both the 
exterior solution and interior solution have to be computed numerically. The 
numerical method provided in the present paper can still be a powerful tool for these 
further modon studies. 

A number of intriguing questions remain. Why does the function F(IY) take the 
strongly nonlinear shape as it does? Why do the vortices become increasingly 
‘hollow ’ and the layers of vorticity thinner as the eccentricity increases Z Why does 
the vorticity concentrate in thin ridges around the edges of each vortex, instead of 
near the centre ? At present we have no physical explanations, even heuristic ones, 
for these remarkable facts. 

This work was supported by the NSF through grants OCE8509923 and 
OCE8812300 and DMS8716766. 
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